Mixture Gumbel models for extreme series including infrequent phenomena
نویسندگان
چکیده
منابع مشابه
Dynamic Mixture Models for Multiple Time-Series
Traditional probabilistic mixture models such as Latent Dirichlet Allocation imply that data records (such as documents) are fully exchangeable. However, data are naturally collected along time, thus obey some order in time. In this paper, we present Dynamic Mixture Models (DMMs) for online pattern discovery in multiple time series. DMMs do not have the noticeable drawback of the SVD-based meth...
متن کاملGaussian Mixture Models for Time Series Modelling, Forecasting, and Interpolation
Gaussian mixture models provide an appealing tool for time series modelling. By embedding the time series to a higher-dimensional space, the density of the points can be estimated by a mixture model. The model can directly be used for short-to-medium term forecasting and missing value imputation. The modelling setup introduces some restrictions on the mixture model, which when appropriately tak...
متن کاملConstruction of recurrent mixture models for time series classification
We present a new hierarchical network architecture that integrates the outputs of recurrent ANNs. The purpose of this architecture is to apply decomposition of time-series learning tasks (using self-organization on multi-channel input). Our approach yields the variance-reducing benefits of techniques such as stacked generalization, but exploits the ability of abstract targets to be factored bas...
متن کاملOn including sequential dependence in ICA mixture models
We present in this communication a procedure to extent ICA mixture models (ICAMM) to the case of having sequential dependence in the feature observation record. We call it sequential ICAMM (SICAMM). We present the algorithm, essentially a sequential Bayes processor, which can be used to sequentially classify the input feature vector among a given set of possible classes. Estimates of the class-...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hydrological Sciences Journal
سال: 2018
ISSN: 0262-6667,2150-3435
DOI: 10.1080/02626667.2018.1546956